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LIQUID CRYSTALS, 1989, VOL. 5 ,  NO. 3, 829-838 

Shapes of blue phase crystals grown in electric fields 

by P. PIERANSKI, P. E. CLADIS? and R. BARBET-MASSIN 
Laboratoire de Physique des Solides, BBtiment 5 10, Facult6 des Sciences, 

91405 Orsay, France 

By breaking spatial isotropy, an applied electric field modifies the equilibrium 
shapes of crystals. Only those crystal shapes whose symmetry is compatible with 
this reduced spatial symmetry grow. The effect is small in atomic crystals but 
observable in blue phase crystals which have millions of molecules per unit cell. An 
analysis is presented discussing electric field-induced modifications to cubic blue 
phase crystals. Specific examples are shown for BP 11. 

1. Introduction: symmetry of crystal shapes 
Crystal shapes are composed of facets and/or rounded parts corresponding to a 

distribution of steps. Most theories of crystal shapes [l-31 deal with ideal situations 
where crystals are in equilibrium with an isotropic environment (for example, an 
isotropic liquid) or are growing in isotropic conditions. In these ideal situations the 
crystal shape must be invariant under all symmetry operations of a point group GP 
isogonal with the space group Gs of the crystal structure. 

Real crystals have facets of different sizes and shapes, determined by growth 
conditions, so that the overall crystal shape has symmetry GL lower than the symmetry 
G, of the ideal crystal. In crystallographic studies these differences in the size and 
shapes of facets are neglected and only angular relationships between facets, which do 
not depend on growth conditions, are used to determine the crystal symmetry, Gs. It 
is clear, however, that this variable symmetry GA of real crystals is not arbitrary but 
depends in a precise manner on the symmetry, G,, of the environment during growth. 

The purpose of this paper is to analyse the change in crystal shapes of blue phases 
grown in the presence of a homogeneous alternating electric field E of different 
orientations with respect to the symmetry axes of the crystals. The electric field 
induces a well defined axial symmetry D, (we neglect the inversion operation because 
blue phases are chiral) for the growth condition so that the resultant reduction of the 
crystal shape symmetry can be treated rigorously. The paper is organized as follows: 
in 52 we analyse qualitatively how the axial symmetry D, of the field affects crystal 
shapes. In $3 we calculate the energy of steps on (1 10) facets of blue phases for 
different orientations of the electric field. Defect-free monocrystals grow uniquely by 
two dimensional nucleation of new crystal planes so that the step energy P,,,(E) 
determines growth rates of the (110) facets. Using a plot of a dimensionless quantity 
f?, = {[p(E)4/fi(0)4] - l}  versus the field direction we find qualitative agreement with 
the results of $2 as well as with experimental facts reported briefly in the final section. 

2. Reduction of the symmetry of crystal shapes due to an anisotropic environment 
The shape of a crystal grown under anisotropic conditions with symmetry G, must 

be invariant under symmetry operations common to the group G, and to the point 

'f Permanent address: AT&T Bell Laboratories, 600 Mountain Avenue Murray Hill, New 
Jersey 07974, U.S.A. 
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830 P. Pieranski et al. 

G, of the crystal structure. These common symmetry operations form a group Gh 
which must be a subgroup both of G, and G,. The point group G, of blue phases I 
and 11, isogonal with their respective space groups 0*(14,32) and 02(P4232) is O(432). 
The symmetry of an alternating electric field E, with a frequencyfmuch larger than 
any characteristic frequencyf, involved in the growth process, and acting on a chiral 
medium,, is D,. The resultant common symmetry Gh = (G, n G,) depends on the 
orientation of the field with respect to the crystal axes. 

Figure 1. Crystal limited by 12 (110) facets. OA, OB and OC are the directions of the 
four-fold, three-fold and two-fold symmetry axes, respectively. 

Figure 1 shows a crystal limited by 12 (1 10) facets. There are six visible facets, 1 
to 6,  and six hidden facets, 1‘ to 6 ,  where n’ indicates a facet opposite to the visible 
facet n. Without the field, all facets of the set S = (1, . . . , 6 ,  l’, . . . , 6’) grow 
with the same velocity and therefore must have identical shapes and sizes. When a 
field E is applied along the four-fold axis OA, the symmetry operations common to 
the groups G, and G, are: the four-fold axis OA, two two-fold axes obtained from the 
two other four-fold axes perpendicular to OA, two two-fold axes perpendicular to the 
facets 1 and 2 and the identity e .  These operations form a group D4 which, as required, 
is a subgroup of both 0 and D,. With this reduction of symmetry, the set S of 12 
facets splits into two disjoint sets Sf = {1,2,1’,2’} and S t  = {3,4,5,6,3’,4’,5’,6‘} of 
equivalent facets. The symmetry operations of the group D, permute only facets 
belonging to the same set Sf or S,”. 

The same considerations can be applied to other directions of the field such as OB, 
OC, OD and all intermediate directions forming a loop ABCADC shown in figure 1. 
The resultant symmetry reductions and splittings of the set S are summarized in the 
table. 

Symmetry of crystal shapes in an electric field. 

Symmetry of the 
Direction of the field crystal shapes Sets or equivalent facets 

D4 {1,2,1’,2’); {3,4,5,6,3‘,4’,5’,6’} 
c2 
D3 {2,3,5,2’,3’,5’}; {1,6,4}; {1’,6’,4} 
c* 
D2 {3,3’}; {6,6’}; {1,5,4‘,2’}; {4,2,1‘,5‘} 
c, 
I 

(1); { l ’ } ;  W’}; {3,5’}; {5,3’); 146’); (64‘) 

{6}; {&I; {3,3‘} {1,4}; {4,1’} {2,5’}; (52’) 

(3,3’}; {1,2’}; {2,1’}; {4,5’} ( 5 3 4 ‘ ) ;  {6,6’} 
{n}; n = 1,2, . . . , 6,1’, . . . , 6’ 
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Blue phase crystals in electric fields 83 1 

3. Energy of steps on (110) facets in a field 
The energy per unit length of a step on the ( 1  10) facet, pllo,  is a quantity crucial 

for problems of faceting and crystal growth. In equilibrium the singularity of 
the surface energy of a crystal surface perpendicular to m is proportional to ficI in 
the vicinity of the [110] direction. Also, in the approximation of two dimensional 
nucleation, the growth rate of the (1 10) facet decreases exponentially with the height 
AE of the nucleation barrier which is also proportional to &,,o,. 

n c l  

,x 

- - - - - _ - - - - _  

- - - - - - - -_ -_  4 
Figure 2. Model of a step on the (1 10) facet. 

Figure 2 shows a model of the ( I  10) crystal facet. The shape z(x) of the step is 
found by minimizing the total surface energy, I?: 

The first term results from an increase in the surface area due to the step. The second 
term is the periodic potential, from the underlying crystalline structure. It tends to fix 
the interface at discrete levels z = nd(,,o,, where d(,,, ,  is the period of V(z). In an 
electric field, V(z)  has two contributions 

V(Z) = V(0, Z )  + V(E, z), (2) 
where V(0,  z )  represents the periodic potential existing without the field and V(E, z )  
is the perturbation due to the field. For simplicity we set 

V(0, z )  = V,sin(qz + 40), (3) 
where q = 2n/d(l10) and & is the phase which depends on the choice of origin, z = 0. 
In the following we suppose that the origin is situation on a two-fold axis and the x 
axis of the local coordinate system (x, y ,  z) is parallel to it as shown in figure 3. 

The perturbation V(E, z )  can be calculated in the same manner as shown previously 
[4]. In blue phases I and I1 the anisotropic part Sd(r) is a periodic function of r and 
can be expanded in a Fourier series 

i(r) = Sd(r) - +[tred(r)]8 

= C E"(q)exp iq - r + C.C. (4) 
4 
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832 P. Pieranski el ul. 

Z 

Figure 3. Choice of a local coordinate system on a (I 10) facet: the z axis is the two-fold 
symmetry axis perpendicular to the facet. The x axis coincides with a two-fold axis 
perpendicular to z. (a) The periodic potential V(0, z);  (b) rn = 0 tensorial component of 
the order parameter .2(r); (c )  I +  component of the order parameter; and ( d )  2' com- 
ponent of the order parameter. Due to the two-fold axis z ,  the 1' compoiient vanishes 
without the field and the interface tends to be fixcd in a minimum of V(0, z ) .  

In an electric field E the dielectric energy density 

1 
F"(r) = - E * e ( r ) * E ,  

8n ( 5 )  

perturbs the blue phase structure. As in [4], we only consider here the low field limit 
where the perturbation of the order parameter $(r) is small compared with its equilib- 
rium value: ~ ( 0 ,  r) 

e(E, r> = t(0, r) + &(E, r); 

&(E, r) = O ( E 2 )  + C(0, r). (6) 

In this approximation each of the Fourier components of equation (4) with wave- 
vectors q / /  [ I  101 will contribute to V(E, z ) .  Following the Landau theory of blue 
phases [5] we suppose that among these Fourier components the predominant one is 

- -- 

cosqz -sinqz 0 

(7) -2 + 
+lo) = 
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Blue phase crystals in electric fields 833 

where q = 27c/d(llo), d(,, , ,  = a/2'I2 and a is the dimension of the cubic unit cell. It 
corresponds to a left handed tensorial helix 2' sketched in figure 3 ( d ) .  As required 
by the 0 symmetry of blue phases, this tensorial helix is invariant under the symmetry 
operations C; and (2; of the two-fold axes coinciding with the z and x axes of the 
coordinate systems (x, y ,  z) chosen for the particular ( I  10) facet considered. Two 
other components with the same wavevector q = 27~2"~/a are allowed by the point 
group 0. One corresponds to a right handed 2- tensorial helix analogous to the other 
(see equation (7)); however, due to the chirality of blue phases, its amplitude &;iO) is 
much smaller than E : : ~ ) .  The second component allowed by the 0 symmetry shown 
in figure 3 (b), is also assumed to be negligible. The (see figure 3 (c))  and &fGo, 
tensorial helices are not invariant under 7c rotation Cg and so they must vanish. 

In the local coordinate system (x, y ,  z),  an electric field in an arbitrary direction 
is 

E : (sin 8 cos 4, sin 8 sin 4, cos 8). (8) 

The dielectric energy density of the &::Io, Fourier component is 

F ~ I  (z) = - 1 E:,+,~,E~ sin2 8 cos (qz + 24) .  
87c (9) 

In order to minimize the total free energy, the crystal-isotropic liquid interface occurs 
at discrete levels such that the last slab of thickness d(,,,,/2 in the vicinity of the 
interface has a negative dielectric energy F"(z) (see equation (9)). It was shown in [4] 
that the periodic potential of equations (1) and (2)  can be expressed as 

I 
V(E, z )  = - ~ { : I ~ , ~ ~ s i n ~  8 sin (qz + 24) 

8nq 

= VEsin28sin(qz + 24).  (10) 

The superposition of V(0, z) and V(E, z) is then simply 

K i m  = K,sin(qz + $), (11) 

V$ = &2 + 2 & ~ ~ s i n ~ 6 c o s ( 2 #  - cp0)  + Visin48. (12) 

where the amplitude K, of the effective potential V,,(z) is 

The step energy (per unit length in the y direction) B;ff0, corresponding to this 
effective potential can be calculated as [I] 

P $ O )  = 8q-l(K,Yo)"2. (13) 

We introduce a dimensionless quantity 

which is zero without the field and measures the modification of the step energy due 
to the field. 
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834 P. Pieranski et al. 

Using equations (14) and (12) we obtain, explicitly, 

Obviously, pa depends on the intensity !El as well as on the orientation of the field, 
with respect to the local coordinate system (x, y ,  z) ,  given by the angles 8 and 4. For 
a given direction of the field in the laboratory referenced frame, 8 and 4 are calculated 
in each of 12 local reference frames (x, y ,  z) ,  chosen in the same way for each of the 

Figure 4. Stereogram used for the calculation of the field direction with respect to the local 
coordinates (x, y ,  z), of each of the visible facets 1-6. The two-fold axis in the centre of 
the sterogram coincides with the z ,  axis of the nth facet. The two-fold axis situated in the 
E-W direction, perpendicular to z,, coincides with the x, axis of the nth facet. The 
trajectory of the electric field varying along OA, OB, OC, OA, OD and OC directions 
(see figure l ) ,  as seen in the reference frame (x ,  y ,  z), of the nth facet, forms an nth loop, 
indicated by arrows made of sections of great circles. 

\\ 
54' ( 
- 

Figure 5. Variation of the quantity B,  on the loop ABCADC calculated for all facets of the 
crystal shape shown in figure 1. 
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Blue phase crystals in electric fields 835 

12 facets {1,2, . . . , 6,1’, . . . , 6’}. For this purpose it is convenient to use the 
stereogram of figure 4. Its principle is the following. Let us suppose first that the field 
is directed along the four-fold axis OA (see figure 1). In the reference frame {x, y ,  
of facet 3, this four-fold axis is on the left of the two-fold axis (11 z3)  in the centre of 
the sterogram. For a field varying along the loop ABCADC (see $2), the correspond- 
ing field directions form loop 3 (indicated by arrows) which is composed of sections 
of great circles. In the reference frame of other facets, the field trajectory corresponding 
to other loops are also indicated in the stereogram. 

Using this representation we calculate P a ( d n ,  b,,) in the limit of low field, where the 
last term in equation ( 1  5 )  is neglected, and for an arbitrarily chosen value of the phase, 
+o = 5”. The variation of p a ( O n ,  4J on the loop ABCADC is shown in figure 5. 

4. Discussion 
As far as symmetry reduction is concerned, figure 5 does not provide new infor- 

mation. As expected from the considerations of 52, pa is the same for all facets 
belonging to the same subset of equivalent facets (third column of the table). The new 
result concerns the relative position of branches (corresponding to different subsets of 
facets) with respect to each other and an isotropic level pa = 0 (for E = 0). For 
example, when the field is directed along the four-fold axis OA pa is positive for facets 
of the subset Sf = (3,4,5,6,3‘,4’,5’,6’} and negative for the facets of the subset 
s2” = {1,2,1’,2’}, 

The inequality 

does not depend on the value of the amplitude E&) (except for a sign change) nor on 
the length 1qI-l of the wavevector but is modified by a different choice of phase, 4,, 

Figure 6 .  Variation of fla of different branches in points, A, B and C of figure 5 versus the 
phase +,,. 
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836 P. Pieranski et al. 

(our initial choice = 5" was arbitrary). In order to check the variation of the 
relative positions of different branches, in points A, B and C of figure 5, as a function 
of &, we plot &(&) in figure 6. When E 11 OA we have 

(17) ! /la($) > o > Ja(s;) for o < 4o < 45" 

/l,(Sz") > 0 > Da(Sf) for 45" < (Po < 90", 
and 

so that the behaviour of the facets of the subsets S;" and S;' interchange. Similar 
inversions occur for other directions of the field (B and C of figure 6). The choice of 
the phase 4o is, therefore, a parameter of this theory which can be determined if we 
know how different facets behave for different directions of the field. 

5. Observations of crystal shapes in the field 
(1 10) facets are present on crystals of both blue phases [6-81. For the purpose of 

this paper it is more convenient to consider only the blue phase I1 because its growth 
forms only exhibit (110) facets when E = 0. 

Blue phase I1 crystals nucleate preferentially with their two-fold, three-fold and 
four-fold axes perpendicular to the cell surfaces (shown in figure 7) made of two 
parallel glass plates coated with transparent electrodes. Since the field is perpendicular 
to the electrodes in this geometry three different orientations OA 11 E, OB 11 E and 
OC ( 1  E are available. It is important to note that only the orientation OA 11 E is 
absolutely stable. As pointed out in [9], the two other orientations are unstable. When 
the field intensity IEl is larger than thresholds EPB and EPc, the crystallites are 
reoriented so that the four-fold axis OA is parallel to the field. In the present 
experiments, we have maintained IE I below these thresholds. 

Ill11 + 11001 
b 

Figure 7. Spontaneous orientations of BP I1 crystals. 

The sample was a mixture of CB15 in E9. We have grown crystals of different 
orientations with and without a field E = 4kVcm-'. Figure 8 summarizes our 
observations of crystal shapes. In the geometry E 11 OB (see figure 8 (c)), we have 
observed { 1,1',4,4,6,6} facets (see figure 1) parallel to the field. The growth rate of 
three facets of the subset SF = { 1,6,4 was much larger in the field than that of facets 
of the subset S," = { 1',6,4}. Consequently, facets of the subset S," are much larger on 
the growth form than facets of the subset Sy . As far as a possible value of the phase 

is concerned, this experimental result means that 4o # 90'. Furthermore the 
growth of the facets of the subset S," is slower in the field than without the field, 
suggesting that c$~ > 10". In the geometry of figure 8 ( d )  (E 11 OC) we have observed 
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Blue phase crystals in electric fields 837 

Figure 8. Crystals of the blue phase I1 grown (a) without and (b )  with the field E / /  OA, 
(4 E II OB (4 E II oc. 

that the 6 and 6' facets are blocked by the field (their growth rate decreases in the 
field). Using figure 6 we find that &, must be <45". Without any quantitative 
measurements of the growth rates we can conclude that the phase c$,, must satisfy the 
inequality 

10" < & < 45". (18) 

Another interesting feature of the crystal shapes shown in figures 8 (b) and 8 (c)  is the 
appearance of (100) facets. This drastic modification of growth forms was explained 
in a previous article [4] as due to the helicoidal character of the four-fold axis of 
symmetry 4. The appearance of these new facets modifies shapes of the adjacent (1 10) 
facets but, as required, the modification obeys the symmetry considerations discussed 
in 52. 

5. Conclusions 
An applied electric field breaks spatial isotropy so, at equilibrium, only those 

crystal shapes compatible with this reduced symmetry grow. This effect is small for 
atomic crystals but has been observed in blue phase crystals which have millions of 
molecules per unit cell. 
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